National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Magnetické pole v jádru Galaxie
Hamerský, Jaroslav ; Karas, Vladimír (advisor) ; Kovář, Jiří (referee)
In the present work we study the properties of accretion tori orbiting black hole. Our approach to this problem comes from the solving of general relativistic magnetohydrodynamic equations, which follow from conservation of the energy-momentum tensor, the particle number and from Maxwell's equations. We solve these equations by numerical methods which are described in Chapter 1. The formalism of tori which we consider here is described in Chapter 2. We are interested in tori with constant density of angular momentum and Fishbone-Moncrief tori mainly. We study accretion rates in these tori when the mass of black hole is increased suddenly and so the equilibrium in the torus is corrupted. For tori with constant density of angular momentum we study the influence of the presence of toroidal magnetic field on accretion rates.
Magnetic field in the Galactic centre
Hamerský, Jaroslav
In the present work we study the properties of accretion tori orbiting black hole. Our approach to this problem comes from the solving of general relativistic magnetohydrodynamic equations, which follow from conservation of the energy-momentum tensor, the particle number and from Maxwell's equations. We solve these equations by numerical methods which are described in Chapter 1. The formalism of tori which we consider here is described in Chapter 2. We are interested in tori with constant density of angular momentum and Fishbone-Moncrief tori mainly. We study accretion rates in these tori when the mass of black hole is increased suddenly and so the equilibrium in the torus is corrupted. For tori with constant density of angular momentum we study the influence of the presence of toroidal magnetic field on accretion rates.
Astrophysical processes near a galactic centre
Hamerský, Jaroslav ; Karas, Vladimír (advisor) ; Kulhánek, Petr (referee) ; Janiuk, Agnieszka (referee)
An accretion torus is an important astrophysical phenomenon which is be- lieved to account for various features of mass inflow and release of radiation on diverse scales near stellar-mass as well as supermassive black holes. When the stationary torus is perturbed it starts to oscillate and once some part of the torus overflows the closed equipotential surface, defined by the stationary solution, this material is accreted or ejected. These oscillations reveal both spacetime properties and the intrinsic characteristics of the torus model. We study the oscillation and accretion properties of geometrically thick accretion tori using general relativistic magnetohydrodynamic simulations. Assuming axial symmetry these simulations are restricted to 2-D approximation. We discuss the impact of the presence of the large scale magnetic field and the profile of the specific angular momentum on the oscillation properties and on the accretion flow motion. 1
Magnetic field in the Galactic centre
Hamerský, Jaroslav
In the present work we study the properties of accretion tori orbiting black hole. Our approach to this problem comes from the solving of general relativistic magnetohydrodynamic equations, which follow from conservation of the energy-momentum tensor, the particle number and from Maxwell's equations. We solve these equations by numerical methods which are described in Chapter 1. The formalism of tori which we consider here is described in Chapter 2. We are interested in tori with constant density of angular momentum and Fishbone-Moncrief tori mainly. We study accretion rates in these tori when the mass of black hole is increased suddenly and so the equilibrium in the torus is corrupted. For tori with constant density of angular momentum we study the influence of the presence of toroidal magnetic field on accretion rates.
Magnetické pole v jádru Galaxie
Hamerský, Jaroslav ; Karas, Vladimír (advisor) ; Kovář, Jiří (referee)
In the present work we study the properties of accretion tori orbiting black hole. Our approach to this problem comes from the solving of general relativistic magnetohydrodynamic equations, which follow from conservation of the energy-momentum tensor, the particle number and from Maxwell's equations. We solve these equations by numerical methods which are described in Chapter 1. The formalism of tori which we consider here is described in Chapter 2. We are interested in tori with constant density of angular momentum and Fishbone-Moncrief tori mainly. We study accretion rates in these tori when the mass of black hole is increased suddenly and so the equilibrium in the torus is corrupted. For tori with constant density of angular momentum we study the influence of the presence of toroidal magnetic field on accretion rates.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.